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A Computational Model of Groundwater Mound Evolution Using the
Complex Variable Boundary Element Method and Generalized Fourier

Series

B.D. Wilkins1, N. Flowerday1, A. Kratch1, J. Greenberg1, B. Redmond1, A. Baily1, T.V. Hromadka II2, K. Hood3, R.
Boucher4, H.D. McInvale5

Abstract. In this work, we propose a numerical scheme for modeling the evolution in time of
a groundwater mound on a rectangular domain. The global initial-boundary value problem
is assumed to have specified Dirichlet boundary conditions. To model this phenomenon, the
global problem is decomposed into two components. Specifically, a steady-state component
and a transient component, which are governed by the Laplace and diffusion partial differ-
ential equations, respectively. The Complex Variable Boundary Element Method (CVBEM)
is used to develop an approximation of the steady-state solution. A linear combination of
basis functions that are the product of a two-dimensional Fourier sine series and an expo-
nential function is used to develop an approximation of the transient solution. The global
approximation function is the sum of the CVBEM approximation function for the steady-
state component and the Fourier series approximation function for the transient part of the
global problem. It has been shown in [14] that the global approximation function satisfies
the governing partial differential equation.

This work focuses on identifying two key problems for the purpose of assessing the va-
lidity of computational groundwater models. The problems considered in this work are
important problems in computational geoscience and are related to modeling groundwater
mounding. In addition to providing and explaining the two proposed test problems, we also
test the performance of the coupled CVBEM and Fourier series partial sum for the purpose
of establishing a benchmark standard for other computational models. The methodology
for creating test problems that is presented in this work can be applied to creating further
such test problems. As more important test problems are developed, more confidence can
be obtained regarding the computational veracity of numerical groundwater models.

1. Introduction

The use of computational models for modeling fluid flow is becoming increasingly more
useful in problems of various size and complexity. Consequently, an emerging issue in com-
putational engineering mathematics is the general use of computational models to describe
groundwater flow. Numerous computational modeling software packages have been devel-
oped that are capable of providing approximate solutions to initial-boundary value problems
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that are governed by the fluid flow partial differential equations. Advanced visualization
techniques are used in these packages to produce high-quality displays of the problem dispo-
sition as well as the results from the computational model. However, although computational
groundwater models are useful in understanding and, particularly, visualizing groundwater
flow, modeling errors can often result in significant design errors, which can have severe conse-
quences in the construction of important groundwater resource elements such as groundwater
recharge basins, for example.

Planning and designing groundwater recharge basins requires an analysis of the unsteady
flow of the groundwater that mounds below the recharge basin. Groundwater mounding is
a process that can occur when infiltrating stormwater intersects a groundwater table, which
typically occurs beneath depressed areas of the Earth such as beneath stormwater infiltration
basins (groundwater recharge basins). In these depressed areas, the proximity of surface
water to the groundwater table is reduced, and there is a concentration of groundwater
recharging [3]. When groundwater recharge is concentrated in a small area, it is possible to
cause groundwater mounding [2].

In this paper, the physical process of unsteady flow of groundwater in a groundwater
mound is formulated into a set of two test problems that are suitable for modeling with
computational methods. These proposed test problems are intended to serve as the beginning
of a set of standard problems that can be used in assessing the validity of computational and
mathematical techniques for approximating solutions to the unsteady flow problem. The two
test problems are mathematical formulations of unsteady groundwater flow and are designed
to assess (1) the ability of computational groundwater models to develop descriptions of
the potential surface (groundwater surface) and (2) the ability to develop the associated
streamline vector trajectories. Other similar types of problems can readily be developed,
and the testing procedure can be applied to those alternate problems. Assessments of this
type are important for identifying potential flaws in computational packages, but can also
be useful for establishing the validity of successful groundwater models, particularly with
respect to modeling unsteady groundwater flow.

In order to provide a benchmark for assessing the success of computational groundwater
models, we also develop a numerical technique for modeling the evolution in time of a
groundwater mound. To model this phenomenon, which is related to unsteady transport,
the global problem is decomposed into two components; namely, a steady-state component
and a transient component. The steady state component is governed by the Laplace partial
differential equation (PDE), ∆u1 = 0, and the transient component is governed by the
diffusion PDE, ∆u2 = ∂u2

∂t
. The Complex Variable Boundary Element Method (CVBEM),

which is a well-known Laplace solver, is used to develop the approximate potential function
description of the steady-state condition. A two-dimensional Fourier sine series is used
to develop the approximate potential function description of the transient portion of the
groundwater flow equations. The global solution is the sum u = u1 + u2 of the CVBEM and
transient approximation outcomes.

The proposed methodology is applicable to rectangular problem domains as well as prob-
lem domains that are the union of several rectangular regions. The boundary conditions of
the global initial-boundary value problem are assumed to be Dirichlet. In order to fit the
global approximation function to the specified boundary conditions of the global BVP, the
boundary conditions of the steady-state component are set to match the boundary condi-
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tions of the global problem. Consequently, the boundary conditions of the transient problem
are set to be zero continuously (i.e. homogeneous boundary conditions). The homoge-
neous boundary conditions for the transient problem are the motivation for the use of the
two-dimensional Fourier sine series in the basis functions of the transient approximation
function. This is because these basis functions can be designed so as to be zero along the
boundary of rectangular domains. The initial condition is assumed to be consistent on the
boundary of the problem domain with the specified global boundary conditions. It is noted
that this methodology can still be applied to model problems with an inconsistent initial
condition, however, in that case, the boundary conditions for the transient problem would
no longer be homogeneous, which is problematic since the Fourier sine series is identically
zero on the boundary of the problem domain.

The CVBEM results in a function that satisfies the Laplace equation within the problem
domain. Additionally, it was shown in [14] that the proposed transient solution satisfies the
diffusion equation within the problem domain. Thus, the only approximation in this method-
ology is in approximating the coefficients for the linear combinations of the steady-state and
transient approximation functions so as to approximately satisfy the specified boundary and
initial conditions, respectively. Therefore, we claim that the numerical solutions to the prob-
lems considered in this work that result from the presented methodology can be used as
benchmarks by which to assess the accuracy of other computational groundwater models in
approximating the solutions to important problems in groundwater flow modeling.

2. Description of Groundwater Test Problems

Many groundwater computational models involve discretizing the problem domain into
numerous finite elements, finite volumes, or finite difference grid nodes. Methods to test
the modeling veracity of such large groundwater models can be difficult to develop and
apply. However, there are several standard problems that computational groundwater models
must be able to accurately approximate in order to be confident that they can be used to
reliably model more complicated problems. In this work, we propose two such test problems
for assessing (1) the ability of computational groundwater models to accurately depict the
surface of an evolving groundwater mound, and (2) the ability of computational groundwater
models to accurately represent the streamlines of the unsteady groundwater flow. Sufficient
performance in modeling these test problems is a necessary, but not sufficient, condition to
imply a similar ability to accurately model more complicated problems.

The problems that are proposed were selected because an accurate solution to these prob-
lems requires effectively (1) fitting the global approximation function to the initial condition,
(2) modeling the unsteady flow (satisfying the governing PDE), (3) fitting the global approx-
imation function to the boundary conditions of the global BVP, (4) generating orthogonal
streamlines to the surface potentials. Other test problems that are designed to assess these
characteristics could also be useful in assessing the veracity of computational groundwater
models.

2.1. Test Problem A: Potential Surface Modeling

An important problem that arises in groundwater management, especially in arid cli-
mates, is the banking of surface water in groundwater recharge basins. Such storage causes
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groundwater mounding, which is a phenomenon that has been well-studied in arid environ-
mental situations. Groundwater mounding is known to cause changes in the surrounding
ecosystem such as changes to the vegetative balance and available water supply, among other
areas of concern. Additionally, rising groundwater mounds can cause the mobilization and
transportation of pollutants that were previously stored in subsurface soil. Therefore, it
is important to be able to model and assess the environmental impacts and ramifications
of introducing additional water into the soil. Consequently, the accuracy of computational
groundwater models is particularly relevant when planning and designing recharge basins.

Test Problem A is designed to assess the accuracy of computational groundwater models
in the development of a potential surface that evolves to represent the attenuation of a
groundwater mound. The methodology presented in this work is suited for any initial mound
condition that satisfies the following two properties: (1) the initial condition is continuous,
and (2) the initial condition is consistent on the boundary with the specified global boundary
conditions. While many initial conditions could be used, in order to demonstrate the new
methodology, a simple, single-peaked mound initial condition is specified. It is assumed that
there are no sources of additional groundwater during the modeling time, thus, for model
times t > 0, the mound continuously reduces in spatial coverage due to downwards and
lateral drainage of the stored groundwater in the mound.

The background (i.e., steady-state) groundwater flow regime is assumed to correspond
to groundwater flow in a 90-degree bend, which is modeled by the complex variable function
ω(z) = z2. The real and imaginary parts of the function z2 correspond to the potential and
stream function representations of the groundwater flow, respectively. The contours of these
two functions, which are depicted in Figure 1, are used to generate the traditional flow net
graphical display of the steady-state situation.

The entire test problem is stated formally as:

Governing PDE: uxx + uyy = ut on Ω = [0, 2]× [0, 1]

Boundary conditions: u(x, y, t) = �[z2] = x2 − y2 on Γ

Initial condition: u(x, y, 0) = 100 sin

(
πx

2

)
sin (πy) + x2 − y2

where Γ = ∂Ω is the boundary of the problem domain. The analytic solution of the initial-
boundary value problem is

u(x, y, t) = 100 sin

(
πx

2

)
sin (πy) e−π2(5/4)t + x2 − y2. (1)

This flow regime is associated with difficult-to-solve spatial distributions for both the
potential and streamline functions, and hence, provides a possibly interesting case where
the analysis must predict the dissipation of the flow regimes corresponding to the specified
background flow superimposed with the groundwater mound. As the mound dissipates
with time, the global flow regime (i.e., background flow plus mound) is restored to just the
background flow regime (the steady-state solution). Consequently, the flow streamlines and
streamline trajectories are continuously changing in magnitude and direction with model
time. For example, in this test problem, flow trajectories actually reverse in many portions
of the problem domain with increasing model time.
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Figure 1: A contour plot of the steady-state surface corresponding to the flow around a 90-degree bend
background regime. The problem boundary is depicted by a red box. The region above the problem domain
is depicted for context. The streamlines for the steady-state solution are easily developed by the CVBEM
by evaluating the imaginary component of the CVBEM approximation function.

This particular test problem can be applied in conjunction with almost any background
flow regime. Using this approach, it is possible to develop a set of suitable test problems
that are each potentially useful for testing different aspects of the computational groundwater
flow model being examined. Once a set of test problems are developed, the computational
groundwater flow model can be applied to each test problem, and its ability to accurately
model the phenomenon can be assessed.

2.2. TEST PROBLEM B: Streamline Development

Groundwater flow analysis is often used to assist in the identification of sources of ground-
water contamination. Computational models are typically developed and then applied to
the flow situation in order to estimate flow streamlines. From the developed approxima-
tion of the flow field, it is possible to identify potential locations of sources of groundwater
contamination. Therefore, Test Problem B is designed to assess the accuracy of computa-
tional groundwater models in the development of streamlines, which indicate the direction
of the fluid flow in the groundwater mound. The approach used in Section 2.1 for develop-
ing test problems to assess computational groundwater mounding models can also be used
in this section to develop test problems for the modeling and identification of groundwater
contaminant sources.

The initial condition of this problem is specified as a single-peaked mound. However,
it is noted that other initial conditions are possible provided that they conform to the two
requirements specified in Section 2.1 regarding the suitability of arbitrary initial conditions.
Similarly to the problem in Section 2.1, a groundwater recharge bulge is considered, how-
ever, in order to demonstrate another background groundwater flow regime, the steady-state
surface models planar flow rather than flow around a 90-degree bend. For this test problem,
the plane will be given by f(x, y) = 2x + y. Figure 2 displays the behavior of the planar
steady-state flow situation and depicts isocontours as well as the vector field.
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Figure 2: A contour plot of the steady-state surface corresponding to the planar flow background regime.
The problem boundary is depicted by a red box. The region above the problem domain is depicted for
context. The streamlines for the steady-state solution are easily developed by the CVBEM by evaluating
the imaginary component of the CVBEM approximation function.

The entire test problem is stated formally as:

Governing PDE: uxx + uyy = ut on Ω = [0, 2]× [0, 1]

Boundary conditions: u(x, y, t) = 2x+ y on Γ

Initial condition: u(x, y, 0) = 100 sin

(
πx

2

)
sin (πy) + 2x+ y

where Γ = ∂Ω is the boundary of the problem domain.
As the mound dissipates with time, the global flow regime (i.e., background flow plus

mound) is restored to just the background flow regime (the steady-state solution). The
analytic solution of this initial-boundary value problem is

u(x, y, t) = 100 sin

(
πx

2

)
sin (πy) e−π2(5/4)t + 2x+ y. (2)

3. Numerical Method Development

3.1. General Groundwater Transport Formulation

The general partial differential equation governing groundwater flow is provided in Equa-
tion (3),

C
∂u

∂t
=

∂

∂x

(
Kx

∂u

∂x

)
+

∂

∂y

(
Ky

∂u

∂y

)
+

∂

∂z

(
Kz

∂u

∂z

)
+

n∑
k=1

Sk (3)

where, C is a capacitance coefficient; x, y, and z are the spatial coordinates; t is the model
time coordinate; φ is the potential function; Ki for i = x, y, z is the hydraulic conductivity,
with each subscript denoting the specific coordinate direction; and Sk is a source or a sink.
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For further details regarding the development of these flow equations, the reader is referred
to [16, 1].

In this work, we consider a problem in two spatial dimensions; namely, x and y. Addi-
tionally, the problem domain is assumed to be homogeneous and isotropic, which reduces the
need for parameter specification in the problem formulation. So, we assume the following
constant values C = Kx = Ky = 1 and, we also assume that there are no sources or sinks.
Under these assumptions, Equation (3) reduces to

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
= ∆u,

which is the diffusion partial differential equation.
The flow situation considered in this work involves modeling the unsteady flow of a

groundwater mound, which is resolving towards the steady-state conditions of the problem
as indicated by the specified global boundary conditions. Therefore, the conceptual problem
can be decomposed into two components, (1) an unsteady flow component of the groundwa-
ter mound, which is reducing in vertical extent over time due to groundwater flowing into
the underlying (background) groundwater regime and (2) a steady-state component repre-
senting the considered test situation after the groundwater mound has fully drained into the
background flow regime. The global approximation function is the sum u = u1 + u2 of the
approximation functions for the steady-state and transient components.

The unsteady flow component (or transient component) is modeled by the product of
a two-dimensional Fourier sine series in the spatial variables x and y and an exponential
function in the model time variable t. Since the geometry is rectangular, it is tractable
to the development of a two-dimensional Fourier sine series approximation of the governing
unsteady flow equations for homogeneous boundary conditions. The steady-state component
is modeled by the Complex Variable Boundary Element Method procedure using complex
variable monomials as basis functions.

In order to fit the global approximation function to the specified boundary conditions of
the global BVP, the boundary conditions of the steady-state component are set to match the
boundary conditions of the global problem. Consequently, the boundary conditions of the
transient problem are set to be zero continuously (i.e. homogeneous boundary conditions).
The homogeneous boundary conditions for the transient problem are the motivation for
the use of the two-dimensional Fourier sine series in the basis functions of the transient
approximation function. The initial condition for the transient component of the global
problem is specified as the difference between the global initial condition and the CVBEM
approximation of the steady-state solution.

3.2. CVBEM Approximation of the Steady-State Component

The governing PDE for the steady-state component of the global problem is the Laplace
equation ∆u1 = 0. The CVBEM, which is a well-known Laplace solver, is a linear combina-
tion of analytic complex variable basis functions of the form

ω̂(z) =

p∑
k=1

ckgk(z), (4)
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where ck is the k
th complex coefficient, gk(z) is the k

th member of the family of basis functions
being used in the approximation, and p is the number of basis functions being used in the
approximation. The CVBEM is the topic of numerous papers and books including [15, 12,
13, 4, 6, 11, 5, 10], and it is assumed that the reader is familiar with the mechanics of the
CVBEM. Therefore, many details of this solution technique are not discussed here. However,
if more information regarding the theoretical development of the CVBEM is desired, the
reader is referred to [8], [9], and [13].

To approximate a solution to the steady-state problem, the CVBEM is applied to the
boundary conditions of the global BVP. Complex monomials are used in the current work as
the family of basis functions in the CVBEM formulation, however, any family (or combination
of families) of analytic basis functions could be used. Since analytic complex variable basis
functions are used in the CVBEM development, both the real and the imaginary component
functions of the CVBEM approximation function satisfy the Laplace equation. Collocation of
the CVBEM approximation function with the specified global boundary conditions is used to
determine the coefficients of the linear combination of the CVBEM approximation function.
Since the coefficients of the CVBEM linear combination are imaginary, each coefficient results
in two degrees of freedom to be determined during the CVBEM modeling process. Thus,
in order to uniquely determine the coefficients of the CVBEM approximation function, it
is necessary to specify boundary conditions at two unique locations for each term in the
CVBEM approximation function.

Determining which part of the CVBEM approximation function to use during collocation
depends on the type of boundary conditions that are specified in the global boundary value
problem. If boundary conditions from the potential function (Dirichlet) are specified, then
collocation would proceed with the real component of the basis functions. Likewise, if given
boundary conditions from the stream function (Neumann), those boundary conditions would
be collocated with the imaginary component of the basis functions. Mixed boundary value
problems are modeled by collocating the real and imaginary component basis functions with
the potential and stream boundary conditions, respectively.

Once the coefficients are known, it is possible to approximate the potential function
of the steady-state situation by applying the coefficients to the real part of the CVBEM
approximation function. Likewise, it is possible to approximate the corresponding stream
function by applying the coefficients to the imaginary part of the CVBEM approximation
function. Note that it is possible to approximate all of the streamline values within the
problem domain without knowing any streamline boundary conditions. That is, the equation
for the stream function is a direct product of the CVBEM due to the orthogonality of the
real and imaginary components of the CVBEM approximation function. Accomplishing
this with real variable domain techniques such as the Finite Element Method would require
post-processing involving an additional numerical scheme to approximate the orthogonal
streamlines.

3.3. Fourier Series Approximation of the Transient Component

The transient component of the global initial-boundary value problem is governed by the
PDE ∆u2 =

∂u2

∂t
. The boundary conditions of this problem are specified to be continuously

zero, which motivates the use of a two-dimensional Fourier sine series, which can be designed
so as to be continuously zero on the boundary of a rectangular problem domain. The initial
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condition of this problem is specified as the difference between the initial condition of the
global initial-boundary value problem and the CVBEM approximation of the steady-state
solution. The approximate transient solution, which is given below and denoted û2, is a
linear combination of basis functions that are the products of a two-dimensional Fourier
Sine Series and an exponential function.

û2(x, y, t) =
m∑
i=1

n∑
j=1

ai,j sin

(
πxi

L1

)
sin

(
πyj

L2

)
e
−π2

(
i2

L2
1
+ j2

L2
2

)
t

(5)

where û2 is the approximate value of the potential quantity that is associated with the
unsteady component of the problem at a particular location and time, x and y are spatial
variables, t is the model time, i and j are indices, ai,j is the coefficient corresponding to the
(i, j)th term of the series (to be determined by collocation with the given initial condition),
and L1 and L2 are the length and width of the rectangular domain, respectively.

One collocation point is needed for each term of the series in Equation (5). Therefore, it
is necessary to specify the initial condition at mn distinct points within the problem domain.
In general, these initial condition collocation points should be located reasonably uniformly
spaced throughout the problem domain.

Notice that since sine functions are used it the Fourier series, which are zero whenever
x = 0, x = L1, y = 0, or y = L2, Equation (5) is zero continuously along the boundary of the
rectangular problem domain. Therefore, the boundary conditions of the transient problem
are satisfied inherently by the transient approximation function. In order to fit the initial
condition, we consider the function in Equation (5) when evaluated at t = 0. This is

û2(x, y, 0) =
m∑
i=1

n∑
j=1

ai,j sin

(
πxi

L1

)
sin

(
πyj

L2

)
(6)

The coefficients ai,j in Equation (6) are determined by collocation of the truncated Fourier
series approximate solution with the initial condition of the transient problem. It is neces-
sary to specify mn distinct domain collocation points in order to uniquely determine the
coefficients of the approximation function for the transient component. Once the coefficients
are known, they can be substituted back into Equation (5) and can then be used to ap-
proximate all of the potential values corresponding to the transient component within the
problem domain. This is the approximation of the transient solution.

4. Numerical Solutions to Test Problems Using Coupled CVBEM and Fourier
Series Approximation

Groundwater flow vector gradients are determined as standard vector gradients of the
resulting global potential function outcome. Since both the CVBEM outcome as well as the
Fourier series approximation of the transient solution are functions, it is possible to calculate
the gradient of their sum, which represents the global approximation function. This results
in a vector field representing streamlines, which are orthogonal to the iso-potential lines.

The global approximation functions that were used in assessing the maximum error of the
global approximation function for various time steps was created using eight terms in the
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CVBEM approximation function and eight terms in the transient solution approximation
function. The maximum errors that are presented in this section were approximated by
comparison of the global approximation with the analytic solution at 2,500 uniformly spaced
points within the problem domain.

4.1. Approximation of Test Problem A: Potential Surface Modeling

Figure 3 shows the two-dimensional flow field vector trajectories corresponding to the
dissipation of the mound in Test Problem A for several model time instances. From these
vector plots, it is seen that as the groundwater mound dissipates with time, the flow regime
vector field transforms from a combined flow field regime into the flow field representing
groundwater flow in a 90-degree bend (the steady-state solution).

Table 1: Maximum relative error in the approximation of the initial condition

Model time Maximum absolute error Model time Maximum absolute error

0 4.2632e−14 0.6 1.7763e−15
0.1 1.0658e−14 0.7 1.7763e−15
0.2 5.3290e−15 0.8 1.7763e−15
0.3 1.7763e−15 0.9 1.7763e−15
0.4 1.7763e−15 1.0 1.7763e−15
0.5 1.7763e−15 Steady-state 1.7763e−15

Notice that as model time increases, the maximum absolute error approaches the maxi-
mum absolute error of the steady-state solution.

4.2. Approximation of Test Problem B: Streamline Development

Figure 4 shows the two-dimensional flow field vector trajectories corresponding to the
dissipation of the mound in Test Problem B for several model time instances. From these
vector plots, it is seen that as the groundwater mound dissipates with time, the flow regime
vector field transforms from a combined flow field regime into the flow field representing
planar flow (the steady-state solution).

Table 2: Maximum relative error in the approximation of the initial condition

Model time Maximum absolute error Model time Maximum absolute error

0 4.2632e−14 0.6 2.6645e−15
0.1 7.1054e−15 0.7 2.6645e−15
0.2 3.5527e−15 0.8 2.6645e−15
0.3 2.6645e−15 0.9 2.6645e−15
0.4 2.6645e−15 1.0 2.6645e−15
0.5 2.6645e−15 Steady-state 2.6645e−15

Notice that as model time increases, the maximum absolute error approaches the maxi-
mum absolute error of the steady-state solution.
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Figure 3: Time evolution of groundwater mound with underlying flow around a 90-degree bend.
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(a) Mound evolution at model time t = 0.0.
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(b) Mound evolution at model time t = 0.3.
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(c) Mound evolution at model time t = 0.5.
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(d) Mound evolution at model time t = 1.0.

5. Conclusions and Discussions

Increasingly, the use of computational models for approximately solving problems in fluid
flow, including groundwater flow, has resulted in modeling with large-scale computational
models involving millions of computational elements. Numerous computational modeling
computer packages are available that provide approximate solutions to the governing ground-
water flow equations and account for problem-specific boundary and initial conditions. The
software packages are frequently capable of providing various high-quality displays including
depictions of the problem setting as well as depictions of the computational results. However,
the high-quality visual displays sometimes provide users with a false sense of confidence in
the computational outputs of the model. Thus, as these visual displays improve, and as the
use of commercially- and publicly-available modeling software becomes more common, it is
becoming increasingly more important to develop a procedure for validating the modeling
results computationally.

In this work, an important problem in the planning and design of groundwater manage-
ment systems is considered; namely, the unsteady flow description of a groundwater mound
located below a groundwater recharge basin. In this paper, the physical process is formu-
lated as a test problem that is suitable for use in assessing computational groundwater flow
models. We propose assessing the outcomes generated by computational softwares with re-
spect to both their approximations of the potential surface (groundwater surface) as well as
their approximations of the streamline vector trajectories. Two test problems are developed
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Figure 4: Time evolution of groundwater mound with underlying planar flow regime.
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(a) Mound evolution at model time t = 0.0.
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(b) Mound evolution at model time t = 0.3.
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(c) Mound evolution at model time t = 0.5.
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(d) Mound evolution at model time t = 1.0.

and considered in this paper, and other similar types of problems can be readily developed
and employed by following the testing procedure set forth in this work. Such an assessment
may lead to better confidence in computational results and possibly an increased ability to
identify potential computational modeling issues with respect to modeling groundwater flow.

Further, in order to provide a benchmark standard for the purpose of assessing other com-
putational models, we also developed a numerical scheme for modeling unsteady groundwater
flow problems on rectangular domains with Dirichlet boundary conditions and a consistent
initial condition. The modeling procedure is based on the standard approach of resolving the
global initial-boundary value problem into a steady-state component and a transient com-
ponent. The PDE governing the steady-state component is the Laplace equation, and the
PDE governing the transient component is the diffusion equation. The boundary conditions
for the steady-state component are set to match the boundary conditions of the global BVP.
The boundary conditions for the transient component are prescribed to be zero continuously,
and the initial condition is specified as the difference between the global initial condition and
the CVBEM approximation of the steady-state solution. The coefficients for the CVBEM
approximation function as well as the transient approximation function are determined by
collocation. The global approximation function is the sum of the CVBEM approximation
function and the transient approximation function. The global approximation function sat-
isfies the governing PDE.

This procedure can be extended to three-dimensional problems using a three-dimensional
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Fourier sine series for the transient portion of the global problem, and the three-dimensional
CVBEM approach to solve the boundary value problem corresponding to the steady-state
portion of the global problem [7].
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